summary of a conjugate Normal-Inverse-Wishart bayesian VAR model

bvar_conj_summary(model)

Arguments

model

estimated conjugate N-IW model

Value

nothing

Details

summary of a conjugate Normal-Inverse-Wishart bayesian VAR model

Examples

data(Yraw) setup <- bvar_conj_setup(Yraw, p = 4)
#> Calculation of hyperparameters from lambdas is not implemented yet :(
#> You may safely ignore the message if you supply lambdas :)
model <- bvar_conj_estimate(setup = setup, keep = 100) bvar_conj_summary(model)
#> Number of lags, p = 4
#> Number of endogeneos variables, m = 3
#> Number of exogeneos variables (including constant), d = 1
#> Number of parameters, k = mp + d = 13
#> Initial number of observations, T_in = 215
#> Number of dummy observations, T_dummy = 20
#> Number of observations available for classic VAR, T = T_in - p = 211
#> Posterior mean of Phi (VAR coefficients) [k = 13 x m = 3]:
#> eq_inflation eq_unemployment eq_interest_rate #> inflation, l = 1 1.324303477 0.026892371 0.326364798 #> unemployment, l = 1 -0.192550805 1.171699260 -0.429377021 #> interest_rate, l = 1 -0.026508511 -0.029864388 0.832926444 #> inflation, l = 2 -0.221426553 -0.011118977 -0.178665196 #> unemployment, l = 2 0.065438617 -0.199306705 0.303542308 #> interest_rate, l = 2 0.019102471 0.016428946 -0.003814684 #> inflation, l = 3 -0.085212104 -0.015393879 0.051025071 #> unemployment, l = 3 0.041503852 -0.087072758 0.053237955 #> interest_rate, l = 3 0.004068285 0.036506618 0.060082575 #> inflation, l = 4 -0.020719579 0.030347152 -0.098299318 #> unemployment, l = 4 0.038393564 0.003018880 0.092319262 #> interest_rate, l = 4 -0.001007131 0.005102153 0.012306069 #> const 0.313102595 0.396227579 0.055204953
#> Posterior nu = 216
#> Number of mcmc simulations, keep = 100
#> Posterior sample mean of Phi (VAR coefficients) [k = 13 x m = 3]:
#> eq_inflation eq_unemployment eq_interest_rate #> inflation, l = 1 1.325249881 0.035847898 0.315937276 #> unemployment, l = 1 -0.186128512 1.185347745 -0.451734641 #> interest_rate, l = 1 -0.026340672 -0.030025586 0.827765355 #> inflation, l = 2 -0.224780213 -0.026596304 -0.157063837 #> unemployment, l = 2 0.059430562 -0.218134370 0.319779275 #> interest_rate, l = 2 0.020767942 0.016620542 -0.008443557 #> inflation, l = 3 -0.079560356 -0.013148946 0.051628900 #> unemployment, l = 3 0.041095031 -0.081167773 0.053341139 #> interest_rate, l = 3 0.003558498 0.035013170 0.075663368 #> inflation, l = 4 -0.025323754 0.035340311 -0.107709407 #> unemployment, l = 4 0.039481458 0.002805226 0.088423957 #> interest_rate, l = 4 -0.001577590 0.005577362 0.007477583 #> const 0.308482905 0.396161448 0.099250522
#> Posterior sample mean of Sigma (noise covariance matrix) [m = 3 x m = 3]:
#> inflation unemployment interest_rate #> inflation 0.101074530 -0.005353771 0.03636750 #> unemployment -0.005353771 0.108798865 -0.09683692 #> interest_rate 0.036367498 -0.096836920 0.59015487
#> Posterior sample sd of Phi (VAR coefficients) [k = 13 x m = 3]:
#> eq_inflation eq_unemployment eq_interest_rate #> inflation, l = 1 0.05535204 0.05692719 0.12629234 #> unemployment, l = 1 0.05408410 0.05519552 0.13007327 #> interest_rate, l = 1 0.02261849 0.02081705 0.06406205 #> inflation, l = 2 0.06703651 0.07595641 0.14793185 #> unemployment, l = 2 0.05643154 0.06447660 0.15547279 #> interest_rate, l = 2 0.02251012 0.02256099 0.06182725 #> inflation, l = 3 0.04807926 0.04818159 0.12096756 #> unemployment, l = 3 0.04526679 0.04192627 0.09912910 #> interest_rate, l = 3 0.01879111 0.02135144 0.04626154 #> inflation, l = 4 0.03317886 0.03577585 0.07393354 #> unemployment, l = 4 0.03153718 0.03473662 0.07507743 #> interest_rate, l = 4 0.01423018 0.01615086 0.03912260 #> const 0.09352182 0.10263803 0.26048028
#> Posterior sample sd of Sigma (noise covariance matrix) [m = 3 x m = 3]:
#> inflation unemployment interest_rate #> inflation 0.008734558 0.006507812 0.01855960 #> unemployment 0.006507812 0.011456540 0.01867098 #> interest_rate 0.018559603 0.018670975 0.06372792